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4. A crash course in model theory

Now for the model theory. Model theory is essentially a branch of logic that formalises the lan-
guage used in mathematics, kind of like how category theory formalises the objects in mathematics.
But you can actually prove stuff with model theory.

Consider the following innocuous statement:

for every x greater than zero there is a y such that y is the square root of x.

Normally you wouldn’t bat an eyelid at this statement, but there’s a lot going on here. Before the
statement makes any sense we need to have a notion of “greater than” and know what “zero” is.
We also need to know about multiplication, since y being the square root of x really just means
y · y = x. Finally we need to know what set we’re working in. As you’ve probably already figured
out, the statement is true in the real numbers or the real algebraic numbers, but not in the rational
numbers (since 2 doesn’t have a square root, say), nor in the complex numbers since there’s no
concept of an order on C by theorem 4.1.

If we strip away the flesh of many mathematical statements we’re left with a very basic language
to use:

(1) The logical symbols, =,∃,∀,∨ (or), ∧ (and), ¬ (not),⇒, and⇔ and variables x, y, z, . . . or
v0, v1, v2, . . .. We don’t need all of these as some can be expressed in terms of the others,
but they’re useful abbreviations.

(2) A specific language for a given context. This consists of a set of function symbols of given
arity, a set of relation symbols of given arity, and a set of constant symbols. The language
of rings, for example, is Lr = {+, ·, 0, 1}. Here + and · are binary functions, there are no
relations, and 0 and 1 are constants. The language of ordered rings is Lor = {+, ·, <, 0, 1},
which includes the binary relation <.

As they stand, the two languages mentioned above don’t mean anything. We could just as
easily write Lr = {f1, f2, c1, c2} for binary functions f1, f2 and constants c1, c2. To give a language
L context we need an L-structure M. This is a set M and an interpretation for each symbol
in L. The interpretation of an n-ary function symbol f ∈ L is a function fM : Mn → M , the
interpretation of an n-ary relation symbol R ∈ L is a subset RM ⊂Mn, and the interpretation of
a constant symbol c ∈ L is an element cM ∈M . We usually don’t distinguish between the symbols
in L and their interpretation in M, though.

As an example consider the Lr-structure M = (R,+, ·, 0, 1). So this is the set of real numbers
equipped with addition and multiplication and special constants zero and one.

The other basic idea in model theory is that of an L-theory. This is just a well-formed set of
formulae using the logical symbols and the language L, and where every variable in each formula
is bound either by ∃ or by ∀. So a typical Lor-theory might be

T = {∀x (0 < x→ (∃y y · y = x)) , ∀x∃y x < y , ∃x (0 < x ∧ ∀y ¬(y · y = x))}.
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The first formula says that every positive number has a square root. The second says that for
every number, there’s a bigger number. The final one says that there’s a positive number with
no square root. This is a valid Lr-theory, but the first and last formulae contradict each other,
so whatever context we work in, we can’t satisfy all the formulae in T . Suppose we drop the last
formula, though, to get a new theory T ′. The two formulae are then satisfied if we work in the
Lr-structure M = (R,+, ·, 0, 1), so we say that M is a model for T ′ and write M |= T ′.

Consider two L-structures M = (M,L) and N = (N,L), and suppose that M ⊆ N and that
the inclusion map i respects the interpretation of the symbols in L, so i(fM(a)) = fN (i(a)) for
every a ∈ M , and so on. Suppose moreover that given any formula φ in the language L we have
M |= φ if and only if N |= φ. Then we say M is an elementary substructure of N and write
M≺ N .

Given an L-theory T we say T is model-complete if, for any models M and N of T , if M ⊆ N
then M≺ N .

5. Definable sets and quantifier elimination

We said that every formula in a theory had to have all its variables bound by quantifiers, such
as in ∀x∃y x < y. That’s so the formula is either true or false in any given model. If we don’t bind
all the variables it’s not so cut-and-dry. Consider the formula φ(x, y) given by

∃z(z 6= 0 ∧ y = x+ z · z).
This formula doesn’t bind x or y, so there’s no sense asking if it’s true in a given structure since
it depends on your choice of x and y. Instead this formula defines a set in a given structure:

{(x, y) ∈ R2 : ∃z(z 6= 0 ∧ y = x+ z · z)} = {(x, y) ∈ R2 : x < y}
{(x, y) ∈ N2

0 : ∃z(z 6= 0 ∧ y = x+ z · z)} = {(x, y) ∈ N2
0 : y − x is a nonzero square}.

In general we say a set X ⊂Mn is definable if there is a formula ψ(x, y) in L such that

X = {x ∈Mn : M |= ψ(x, b)}
for some b ∈Mm.

Some examples using the language Lr of rings include:

• In the structure (Z,+, ·, 0, 1) the set {(m,n) ∈ Z2 : m < n} is definable using Lagrange’s
four squares theorem.
• If F is a field and we consider the structure (F [X],+, ·, 0, 1) then F is definable in this

structure – it’s the set of units.
• More surprisingly, we can define C in the structure (C(X),+, ·, 0, 1) using arguments in-

volving elliptic curves.
• Zp is definable in (Qp,+, ·, 0, 1) using Hensel’s lemma.
• One of the great results in model theory in the twentieth century was a result by Julia

Robinson who showed that the integers are definable in (Q,+, ·, 0, 1). To define them let
φ(x, y, z) be the formula

∃a∃b∃c xyz2 + 2 + yc2 = a2 + xy2

and let ψ(x) be the formula

∀y∀z ([φ(y, z, 0) ∧ (∀w (φ(y, z, w)→ φ(y, z, w + 1)))]→ φ(y, z, x)).

Then ψ(x) define Z.
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In general the definable sets are the smallest collection of sets D = {Dn}n>1 such that each Dn

boolean algebra of subsets of Mn and the sets are closed under projection, i.e. if A ∈ Dn+1 and
π : Mn+1 →Mn is a projection map then π(A) ∈ Dn, and such that a few simple sets are included
just to get things started. This sounds an awful lot like semi-algebraic sets, except we don’t know
they’re closed under projection. Yet.

The symbols ∃ and ∀ are called quantifiers, and in general they complicate things. But sometimes
one can replace a formula involving quantifiers by a quantifier-free formula. For example, consider
the set in R3 defined by the formula φ(a, b, c)

∃x ax2 + bx+ c = 0.

A little thought shows this gives the same numbers a, b, c as the following formula:

(a 6= 0 ∧ b2 − 4ac > 0) ∨ (a = 0 ∧ (b 6= 0 ∨ c = 0)).

Here we’ve taken some liberties with the notation, such as writing ¬ a = 0 as a 6= 0, and b·b−4ac =
0 ∨ b · b − 4ac > 0 as b2 − 4ac > 0. Technically we shouldn’t even use 4 or >, we should write
1 + 1 + 1 + 1 and flip the inequalities the other way around, but we’re here for semi-algebraic
geometry not semi-obfuscating pedantry, so we’ll let it go.

As an exercise you might want to work out a quantifier-free formula equivalent to the following:

∃x∃y∃u∃v (xa+ yc = 1 ∧ xb+ yd = 0 ∧ ua+ vc = 0 ∧ ub+ vd = 1).

If any formula involving quantifiers can be rewritten without them then we say the set of
formulae under consideration has quantifier elimination. There’s a result in model theory that
says if a theory has quantifier elimination then it is model-complete. What does this mean in our
case?

Consider the set X in Rn defined by the formula φ(x) given by

∃y (f(x, y) = 0 ∧ g1(x, y) > 0 ∧ . . . ∧ gk(x, y) > 0)

where y is in R, say. So then x0 is in X if and only if there is a point y0 in R such that

(x0, y0) ∈ {(x, y) ∈ Rn ×R : f(x, y) = 0, g1(x, y) > 0, . . . , gk(x, y) > 0} = A.

Let π : Rn+1 → Rn be the projection map on the first n coordinates. The above says that x0 ∈ X
precisely if x0 ∈ π(A). This means that we can get rid of the quantifier and define X just using
polynomial identities and inequalities if and only if the projection of a semi-algebraic set is still
semi-algebraic.

It is not at all obvious that this is true. The corresponding statement for algebraic sets is
very false, just consider the circle in C2, say, and project it down to C and you get a disc, which
isn’t an algebraic set. The result does hold for semi-algebraic sets, though, a result known as the
Tarski–Seidenberg theorem.

Theorem 5.1 (Tarski–Seidenberg). Let E ⊂ Rn+1 be a semi-algebraic set and π be the projection
map on the first n coordinates. Then π(E) is a semi-algebraic set in Rn. Equivalently the theory
of semi-algebraic sets has quantifier elimination.

The Tarski–Seidenberg theorem is fairly amazing, and the proof isn’t terribly difficult. We’re
solving Hilbert’s seventeenth problem, though, so we’ll just need a consequence of this theorem.

Corollary 5.2. The definable sets in the theory of real closed fields are precisely the semi-algebraic
sets.

Corollary 5.3. The theory of real closed fields is model-complete.
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6. Hilbert’s seventeenth problem

Definition 6.1. Let F be a real closed field and f(X) ∈ F (X1, . . . , Xn) be a rational function.
We say that f is positive semidefinite if f(a) > 0 for all a ∈ Fn.

Hilbert asked if real positive semidefinite polynomials could always be written as sums of squares
of rational functions, similarly to how positive integers can be written as sums of squares. The
answer is: yes, yes they can.

Theorem 6.2 (Hilbert’s seventeenth problem). If f is a positive semidefinite rational function
over a real closed field F , then f is a sum of squares of rational functions.

Proof. Let f(X1, . . . , Xn) be a positive semidefinite rational function over F that isn’t a sum of
squares. So by theorem 3.1 there’s an ordering of F (X) such that f(X) is negative. Let R be the
real closure of F (X) extending this order, which we have by corollary 3.4. Then

R |= ∃v f(v) < 0

since the variable now ranges over R and X ∈ R, and we have f(X) < 0 in R. But RCF is
model-complete so anything true in an extension structure is true in a substructure, so

F |= ∃v f(v) < 0,

where now the variable ranges over Fn. This contradicts f being positive semidefinite. Thus no
such f can exist. �


